Vector Lattices Admitting a Positively Homogeneous Continuous Function Calculus
نویسندگان
چکیده
منابع مشابه
Homogeneous Lyapunov function for homogeneous continuous vector field
The goal of this article is to provide a construction of a homogeneous Lyapunov function P associated with a system of differential equations J = f(x), x ~ R ~ (n > 1), under the hypotheses: (1) f ~ C(R n, ~ ) vanishes at x = 0 and is homogeneous; (2) the zero solution of this system is locally asymptotically stable. Moreover, the Lyapunov function V(x) tends to infinity with 1[ x [I, and belon...
متن کاملAn equivalence functor between local vector lattices and vector lattices
We call a local vector lattice any vector lattice with a distinguished positive strong unit and having exactly one maximal ideal (its radical). We provide a short study of local vector lattices. In this regards, some characterizations of local vector lattices are given. For instance, we prove that a vector lattice with a distinguished strong unit is local if and only if it is clean with non no-...
متن کاملHomogeneous spaces admitting transitive semigroups
Let G be a semi-simple Lie group with finite center and S ⊂ G a semigroup with intS 6= Ø . A closed subgroup L ⊂ G is said to be S -admissible if S is transitive in G/L . In [10] it was proved that a necessary condition for L to be S -admissible is that its action in B (S) is minimal and contractive where B (S) is the flag manifold associated with S , as in [9]. It is proved here, under an addi...
متن کاملIntermediate logics admitting a structural hypersequent calculus
We characterise the intermediate logics which admit a cut-free hypersequent calculus of the form HLJ+ R, where HLJ is the hypersequent counterpart of the sequent calculus LJ for propositional intuitionistic logic, and R is a set of so-called structural hypersequent rules, i.e., rules not involving any logical connectives. The characterisation of this class of intermediate logics is presented bo...
متن کاملUDC 517.98 FUNCTIONAL CALCULUS AND MINKOWSKI DUALITY ON VECTOR LATTICES To Şafak Alpay on his sixtieth birthday
The paper extends homogeneous functional calculus on vector lattices. It is shown that the function of elements of a relatively uniformly complete vector lattice can naturally be defined if the positively homogeneous function is defined on some conic set and is continuous on some closed convex subcone. An interplay between Minkowski duality and homogeneous functional calculus leads to the envel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Quarterly Journal of Mathematics
سال: 2020
ISSN: 0033-5606,1464-3847
DOI: 10.1093/qmathj/haz031